Science Daily reports:

Werner Heisenberg’s uncertainty principle, formulated by the theoretical physicist in 1927, is one of the cornerstones of quantum mechanics. In its most familiar form, it says that it is impossible to measure anything without disturbing it. For instance, any attempt to measure a particle’s position must randomly change its speed.

The principle has bedeviled quantum physicists for nearly a century, until recently, when researchers at the University of Toronto demonstrated the ability to directly measure the disturbance and confirm that Heisenberg was too pessimistic. [...]

The findings build on recent challenges to Heisenberg’s principle by scientists the world over. Nagoya University physicist Masanao Ozawa suggested in 2003 that Heisenberg’s uncertainty principle does not apply to measurement, but could only suggest an indirect way to confirm his predictions. A validation of the sort he proposed was carried out last year by Yuji Hasegawa’s group at the Vienna University of Technology. In 2010, Griffith University scientists Austin Lund and Howard Wiseman showed that weak measurements could be used to characterize the process of measuring a quantum system. However, there were still hurdles to clear as their idea effectively required a small quantum computer, which is difficult to build.

Full Story: Science Daily: Scientists Cast Doubt On Heisenberg’s Uncertainty Principle