Engineering professor Barbara Oakley explains how she rewired her brain for math at the age of 26:

When learning math and engineering as an adult, I began by using the same strategy I’d used to learn language. I’d look at an equation, to take a very simple example, Newton’s second law of f = ma. I practiced feeling what each of the letters meant—f for force was a push, m for mass was a kind of weighty resistance to my push, and a was the exhilarating feeling of acceleration. (The equivalent in Russian was learning to physically sound out the letters of the Cyrillic alphabet.) I memorized the equation so I could carry it around with me in my head and play with it. If m and a were big numbers, what did that do to f when I pushed it through the equation? If f was big and a was small, what did that do to m? How did the units match on each side? Playing with the equation was like conjugating a verb. I was beginning to intuit that the sparse outlines of the equation were like a metaphorical poem, with all sorts of beautiful symbolic representations embedded within it. Although I wouldn’t have put it that way at the time, the truth was that to learn math and science well, I had to slowly, day by day, build solid neural “chunked” subroutines—such as surrounding the simple equation f = ma—that I could easily call to mind from long term memory, much as I’d done with Russian.

Time after time, professors in mathematics and the sciences have told me that building well-ingrained chunks of expertise through practice and repetition was absolutely vital to their success. Understanding doesn’t build fluency; instead, fluency builds understanding. In fact, I believe that true understanding of a complex subject comes only from fluency.

Full Story: Nautilus: How I Rewired My Brain to Become Fluent in Math