Scientists at UC Santa Barbara have made a major discovery in how the brain encodes memories. The finding, published in the December 24 issue of the journal Neuron, could eventually lead to the development of new drugs to aid memory.
The team of scientists is the first to uncover a central process in encoding memories that occurs at the level of the synapse, where neurons connect with each other. […]
The production of new proteins can only occur when the RNA that will make the required proteins is turned on. Until then, the RNA is “locked up” by a silencing molecule, which is a micro RNA. The RNA and micro RNA are part of a package that includes several other proteins. […]
Part of strengthening a synapse involves making new proteins. Those proteins build the synapse and make it stronger. Just like with exercise, when new proteins must build up muscle mass, synapses must also make more protein when recording memories. In this research, the regulation and control of that process was uncovered.
The production of new proteins can only occur when the RNA that will make the required proteins is turned on. Until then, the RNA is “locked up” by a silencing molecule, which is a micro RNA. The RNA and micro RNA are part of a package that includes several other proteins. […]
When the signal comes in, the wrapping protein degrades or gets fragmented. Then the RNA is suddenly free to synthesize a new protein.
Physorg: Scientists discover how the brain encodes memories at a cellular level
(via Kurzweil via Cat Vincent)